
Efficient Methods for Selfish Network Design�

Dimitris Fotakis1, Alexis C. Kaporis2,3, and Paul G. Spirakis2,3

1 School of Electrical and Computer Engineering
National Technical University of Athens, 15780 Athens, Greece

2 Department of Computer Engineering and Informatics
University of Patras, 26500 Patras, Greece

3 Research Academic Computer Technology Institute
N. Kazantzaki Str., University Campus, 26500 Patras, Greece

fotakis@cs.ntua.gr, kaporis@ceid.upatras.gr, spirakis@cti.gr

Abstract. Intuitively, Braess’s paradox states that destroying a part
of a network may improve the common latency of selfish flows at Nash
equilibrium. Such a paradox is a pervasive phenomenon in real-world
networks. Any administrator, who wants to improve equilibrium delays
in selfish networks, is facing some basic questions: (i) Is the network
paradox-ridden? (ii) How can we delete some edges to optimize equilib-
rium flow delays? (iii) How can we modify edge latencies to optimize
equilibrium flow delays?

Unfortunately, such questions lead to NP-hard problems in general.
In this work, we impose some natural restrictions on our networks, e.g.
we assume strictly increasing linear latencies. Our target is to formulate
efficient algorithms for the three questions above. We manage to provide:

– A polynomial-time algorithm that decides if a network is paradox-
ridden, when latencies are linear and strictly increasing.

– A reduction of the problem of deciding if a network with arbitrary
linear latencies is paradox-ridden to the problem of generating all
optimal basic feasible solutions of a Linear Program that describes
the optimal traffic allocations to the edges with constant latency.

– An algorithm for finding a subnetwork that is almost optimal wrt
equilibrium latency. Our algorithm is subexponential when the num-
ber of paths is polynomial and each path is of polylogarithmic length.

– A polynomial-time algorithm for the problem of finding the best
subnetwork, which outperforms any known approximation algorithm
for the case of strictly increasing linear latencies.

– A polynomial-time method that turns the optimal flow into a Nash
flow by deleting the edges not used by the optimal flow, and perform-
ing minimal modifications to the latencies of the remaining ones.

Our results provide a deeper understanding of the computational com-
plexity of recognizing the Braess’s paradox most severe manifestations,
and our techniques show novel ways of using the probabilistic method
and of exploiting convex separable quadratic programs.

� The 3rd author was partially supported by the FET Unit of EC, under contract
no. FP6-021235-2 (ARRIVAL), and by the ICT Programme of the EU, under con-
tract no. ICT-2008-215270 (FRONTS). Part of this work was done while the 1st
author was with the Dept. of Information and Communication Systems Eng., Uni-
versity of the Aegean, Greece.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 459–471, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

460 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

1 Introduction

A typical instance of selfish routing consists of a directed network with a source
s and a destination t, with each edge having a non-decreasing function that
determines the edge’s latency as a function of its traffic, and a rate of traffic
divided among an infinite population of players, each willing to route a negligible
amount of traffic through a s− t path. The players seek to minimize the sum of
edge latencies on their path. Observing the traffic caused by others, each player
selects a s−t path of minimum latency. Thus, they reach a Nash equilibrium (aka
a Wardrop equilibrium), where all players route their traffic on paths of equal
minimum latency. Under some general assumptions on the latency functions, a
Nash equilibrium flow (or simply a Nash flow) exists and the common (and the
total) players’ latency in a Nash flow is unique (see e.g. [25,28]).

Motivation and Previous Work. A Nash equilibrium may not optimize the
network performance, measured by the total latency incurred by all players.
The main tool for quantifying and understanding the performance degradation
due to the players’ non-cooperative and selfish behaviour has been the Price of
Anarchy (PoA), which was suggested in a groundbreaking work by Koutsoupias
and Papadimitriou [17]. The PoA is the ratio of the total latency of the Nash
flow to the optimal total latency. Roughgarden [26] proved that the PoA is
independent of the network topology and at most ρ(D), where ρ only depends
on the class of latency functions D (e.g. ρ is 4/3 for linear latencies).

With the PoA very well understood, a few natural approaches for reducing
it have been investigated. A simple approach that does not require any network
modifications is Stackelberg routing [16], where the administrator exploits a small
fraction of coordinated traffic to improve the quality of the Nash flow reached by
the remaining selfish traffic. For parallel-link networks with arbitrary latencies
and for general networks with polynomial latencies, the coordinated traffic can
be allocated so that the PoA decreases smoothly to 1 as the fraction of the
coordinated traffic increases (see e.g. [27,15,4], and [9] for the case of atomic
players with unsplittable traffic). Unfortunately, there are instances for which
the PoA remains unbounded under any allocation of the coordinated traffic
[4], and instances where enforcing the optimal flow requires a large fraction of
coordinated traffic [13]. A different approach is to introduce edge-dependent
per-unit-of-traffic tolls, that influence the players’ selfish choices and induce the
optimal flow as the Nash flow of the modified instance. In the refundable tolls
setting, where tolls affect the players’ cost but not the network performance,
tolls that enforce the optimal flow can be computed efficiently even if the players
have different latency-vs-tolls valuations (see e.g. [7,8,14], see also [6,10] on the
performance of refundable tolls for atomic players). However, the idea of tolls
is not appealing to the players, since large tolls that significantly increase the
players’ disutility may be required to enforce the optimal flow (see e.g. [8]).

A simpler way of improving network performance at equilibrium is to exploit
the essence of the Braess’s paradox [5], namely that removing some network edges
may decrease the latency of the Nash flow (see Fig. 1 for an example). Thus, given

Efficient Methods for Selfish Network Design 461

t

w

v

s

l(x) = x

l(x) = x

l(x) = 1

l(x) = 1

(b)

t

w

v

s1

l(x) = x

l(x) = x

l(x) = 1

l(x) = 1

l(x) = 0

(a)

1

Fig. 1. (a). The optimal flow routes 1/2 unit of traffic on the upper path (s, v, t) and
1/2 unit on the lower path (s, w, t), and achieves a total latency of 3/2. In the Nash
flow, all traffic goes through the path (s, v, w, t). The players’ latency is 2, and the PoA
is 4/3. (b). Without the edge (v, w), the Nash flow coincides with the optimal flow.
The network (a) is paradox-ridden, and the network (b) is its best subnetwork.

an instance of selfish routing, the administrator seeks for the best subnetwork,
i.e. the subnetwork minimizing the players’ latency at equilibrium. Compared
to Stackelberg routing and refundable tolls, edge removal is simpler and more
appealing. For the administrator, blocking the traffic on some edges is easier and
less expensive to implement than setting up a mechanism for collecting tolls on
every edge and refunding them to the players. As for the players, edge removal
is applied only if it results in a (significant) improvement on their equilibrium
latency, which is preferable to either tolls, that increase their disutility, or a
Stackelberg strategy, that allocates the coordinated traffic to slower paths.

Recent work indicates that edge removal can improve the performance of real-
world networks (see e.g. [28]). In this vein, Valiant and Roughgarden [30] proved
that the Braess’s paradox occurs with high probability on random networks,
and that for a natural distribution of linear latencies, edge removal improves
the equilibrium latency by a factor arbitrarily close to 4/3 (i.e. the worst-case
PoA for linear latencies) with high probability. Unfortunately, Roughgarden [29]
proved that it is NP-hard not only to find the best subnetwork, but also to
compute any meaningful approximation to the equilibrium latency on the best
subnetwork. In particular, he showed that even for linear latencies, it is NP-
hard to distinguish between paradox-free instances, where edge removal cannot
improve the equilibrium latency, and paradox-ridden instances, where the total
latency of the Nash flow on the best subnetwork is equal to the optimal total
latency (i.e. edge removal can decrease the PoA to 1). This implies that for
any ε > 0, it is NP-hard to approximate the equilibrium latency on the best
subnetwork within a factor of 4/3 − ε for linear latencies, and within a factor
of �n/2�−ε for general latencies, where n denotes the number of nodes. In fact,
the only known algorithm for approximating the equilibrium latency on the best
subnetwork is the trivial one, which does not remove any edges and achieves an
approximation ratio of 4/3 for linear latencies and �n/2� for general latencies.

Contribution. The motivating question for this work is whether there are some
practically interesting settings where a set of edges, whose removal significantly
improves the equilibrium latency, can be computed efficiently. Rather surpris-
ingly, we answer this question in the affirmative for several interesting cases. To

462 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

the best of our knowledge, our results are the first of theoretical nature which
indicate that the Braess’s paradox can be efficiently detected and eliminated in
many interesting cases. Throughout this paper, we mostly focus on the impor-
tant case of linear latencies, even though some of our results can be generalized
to other classes of latency functions (e.g. polynomial latencies).

We first consider the problem of recognizing paradox-ridden instances. Even
though this problem is NP-complete for arbitrary linear latencies [29], we show
that it becomes polynomially solvable for the important case of strictly increasing
linear latencies1. Recognizing a paradox-ridden instance is equivalent to deciding
whether the instance admits an optimal flow that is a Nash flow on its subnet-
work (cf. Lemma 1). Then removing all edges not used by the optimal flow yields
the best subnetwork. However, an instance may admit many different optimal
flows. In fact, the NP-hardness proofs in [29] employ instances with exponentially
many optimal flows. On the other hand, if the optimal flow is unique, we can
recognize paradox-ridden instances by computing it and checking whether it is a
Nash flow on its subnetwork. Based on this observation, we present a polynomial-
time algorithm that recognizes paradox-ridden instances with strictly increasing
linear latencies (cf. Theorem 1). Furthermore, we reduce the problem of recog-
nizing a paradox-ridden instance with arbitrary linear latencies to the problem of
generating all optimal basic feasible solutions of a Linear Program that describes
the optimal traffic allocations to the constant latency edges (cf. Theorem 2).

Then we proceed to the more general problem of computing the best sub-
network and its equilibrium latency. For instances with polynomially many
paths, each of polylogarithmic length, and arbitrary linear latencies, we present
a subexponential-time approximation scheme. For any ε > 0, the algorithm com-
putes a subnetwork with an ε-Nash flow in which the players’ latencies are within
an additive term of ε/2 from the equilibrium latency on the best subnetwork. The
running time is exponential in poly(log m)/ε2, where m is the number of edges
(cf. Theorem 3). The analysis is based on a novel application of the Probabilistic
Method [1] motivated by Althöfer’s Lemma [2] and its application to the compu-
tation of approximate Nash equilibria for bimatrix games [21,20]. In particular,
we apply the Probabilistic Method and show that any flow on any network ad-
mits an ε-approximate “sparse” flow, which assigns traffic to O(logm/ε2) paths
(cf. Lemma 2). The proof has to take advantage of the network structure, since
the number of paths may be exponential in m. Hence, our result comprises a
novel (and more efficient) extension of Althöfer’s Lemma to the network set-
ting. In addition, the application to the best subnetwork approximation deals
with a congestion game with an infinite number of players, and is fundamentally
different from the application of Althöfer’s Lemma to approximation of Nash
equilibria for bimatrix games. In fact, to the best of our knowledge, this is the
first time that similar techniques are applied in the context of selfish routing.

For instances with strictly increasing linear latencies that are not paradox-
ridden, we show that there is an instance-dependent δ > 0, such that the

1 Constant latency edges represent links of practically infinite capacity. Therefore real-
world networks are most unlikely to contain many of them, if they contain any.

Efficient Methods for Selfish Network Design 463

equilibrium latency is within a factor of 4/3 − δ from the equilibrium latency
on the best subnetwork. Since we can efficiently compute the best subnetwork
for paradox-ridden instances, we can use the trivial algorithm for the remain-
ing ones, and approximate the equilibrium latency on the best subnetwork
within a factor strictly smaller than the inapproximability threshold2 of 4/3
(cf. Theorem 4).

If the instance is not paradox-ridden however, it is not possible to turn the
optimal flow into a Nash flow by just removing edges. Enforcing the optimal
flow is possible, if in addition to removing edges, the administrator can modify
the latency functions. In Section 5, we present a polynomial-time algorithm for
the problem of minimally modifying the latency functions of the edges used
by the optimal flow so that the optimal flow is enforced as a Nash flow on the
subnetwork used by the optimal flow with the modified latencies (cf. Theorem 5).

Other Related Work. For the problem of finding the best subnetwork in the
atomic model, Azar and Epstein [3] obtained strong inapproximability results
similar to those in [29]. Interestingly, the Braess’s paradox can be dramatically
more severe in multi-commodity instances than in single-commodity ones. More
precisely, Lin et al. [18] proved that for single-commodity instances with general
latency functions, the removal of at most k edges cannot improve the equilib-
rium latency by a factor greater than k + 1. On the other hand, Lin et al. [19]
presented a 2-commodity instance where the removal of a single edge improves
the equilibrium latency by a factor of 2Ω(n). As for the impact of the network
topology, Milchtaich [23] proved that the Braess’s paradox does not occur in
(single-commodity) series-parallel networks, which is precisely the class of net-
works that do not contain the network in Fig. 1.a as a topological minor.

2 Model, Preliminaries, and Problem Definitions

A selfish routing instance is a tuple G = (G(V, E), (�e)e∈E , r), where G(V, E) is
a directed network with a source s and a destination t, �e : IR≥0 �→ IR≥0 is a
non-decreasing latency function associated with each edge e, and r > 0 is the
rate of traffic entering the network at s and leaving the network at t. Let n = |V |
and m = |E|, and let P denote the set of simple s−t paths in G. We assume that
the edge latency functions �e(x) are continuous, differentiable, and convex in the
interval [0, r]. We mostly focus on linear latency functions �e(x) = aex+be, with
rational coefficients ae, be ≥ 0. Such a function is constant if ae = 0.

Given a selfish routing instance G = (G(V, E), (�e)e∈E , r), any subgraph
H(V, E′), E′ ⊆ E, obtained from G by edge deletions is called a subnetwork
of G. H has the same source s and destination t as G, and the edges of H

2 The reduction of [29, Theorem 3.3] constructs instances where almost all edges have
constant latency 0. Using �(x) = εx, for some very small ε > 0, instead of 0, we can
show that even for strictly increasing linear latencies, it is NP-hard to approximate
the equilibrium latency on the best subnetwork within a factor considerably smaller
than 4/3 for all instances. In this sense, our result is best possible.

464 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

preserve their latencies in G. Each instance H = (H(V, E′), (�e)e∈E′ , r), where
H(V, E′) is a subnetwork of G(V, E), is called a subinstance of G.

Flows. A (G-feasible) flow f is a non-negative vector indexed by P so that∑
p∈P fp = r. For a flow f , let fe =

∑
p:e∈p fp be the amount of flow that f

routes on edge e. Flows f and g are different if there is an edge e with fe �= ge.
An edge e is used by flow f if fe > 0. Given a flow f , the latency of each edge e
is �e(fe), and the latency of each path p is �p(f) =

∑
e∈p �e(fe). For an instance

G defined on a network G(V, E) and a flow f , we let Ef = {e ∈ E : fe > 0} be
the set of edges used by f , and Gf (V, Ef) be the subnetwork of G corresponding
to f . A flow f is acyclic if Gf contains no cycles.

The total latency of a flow f is C(f) =
∑

p∈P fp�p(f) =
∑

e∈E fe�e(fe) . The
optimal flow of instance G, denoted o, minimizes the total latency among all
G-feasible flows. We let L∗(G) = C(o)/r be the average latency in the optimal
flow. We note that for every subinstance H of G, L∗(H) ≥ L∗(G). For the latency
functions considered in this paper, an optimal flow can be computed efficiently,
while for strictly increasing latencies, the optimal flow is unique (in the sense
that all optimal flows route the same amount of traffic on every edge).

Nash Flows. The traffic is divided among an infinite population of players, each
willing to route a negligible amount of traffic through a minimum latency s − t
path. A flow f is a Nash flow, if it routes all traffic on minimum latency paths.
Formally, f is a Nash flow if for every path p with fp > 0, and every path p′,
�p(f) ≤ �p′(f). Therefore, in a Nash flow f , all players incur a common latency
L(f) = minp:fp>0 �p(f) on their paths, and the total latency is C(f) = rL(f).

For the latency functions considered in this paper, every instance G admits
at least one Nash flow, and the common players’ latency (and thus the total
latency) is the same for all Nash flows (see e.g. [28]). For instance G, we let
L(G) (resp. rL(G)) be the common players’ latency (resp. total latency) for
some Nash flow of G. We refer to L(G) (resp. rL(G)) as the equilibrium latency
(resp. equilibrium total latency) of G. We note that for every subinstance H of
G, L∗(G) ≤ L(H), and that there may be subinstances H with L(H) < L(G) (see
e.g. Fig. 1). For the class of latency functions considered in this paper, a Nash
flow can be computed efficiently, while for strictly increasing latencies, the Nash
flow is unique (see e.g. [28, Cor. 2.6.4]).

ε-Nash flows. The definition of a Nash flow can be naturally generalized to
that of an “almost Nash” flow. Formally, for some ε > 0, a flow f is an ε-Nash
flow if for every path p with fp > 0, and every path p′, �p(f) ≤ �p′(f) + ε.

Price of Anarchy. The Price of Anarchy (PoA) of a selfish routing instance G,
denoted ρ(G), is the ratio of the equilibrium total latency to the optimal total
latency. By the discussion above, ρ(G) = L(G)/L∗(G).

Other Notation and Conventions. For any integer k ≥ 1, we let [k] =
{1, . . . , k}. For an event E in a sample space, we let IP[E] denote the proba-
bility of event E happening. For a random variable X , we let IE[X] denote the
expectation of X . For convenience and wlog., we normalize the traffic rate to 1.

Efficient Methods for Selfish Network Design 465

Then L(G) equals both the common players’ latency and the total latency at
equilibrium, and L∗(G) equals both the optimal average latency and the optimal
total latency of G. With the traffic rate normalized to 1, we sometimes identify
a selfish routing instance with the corresponding network.

Paradox-Free and Paradox-Ridden Instances. An instance G defined on
a network G is paradox-free if for every subnetwork H of G, L(H) ≥ L(G).
Paradox-free instances do not suffer from the Braess’s paradox and their PoA
cannot be improved by edge removal. An instance G is paradox-ridden if there is
a subnetwork H of G such that L(H) = L∗(G) = L(G)/ρ(G). Namely, the PoA
of paradox-ridden instances can decrease to 1 by edge removal.

Best Subnetwork. Given instance G, the best subnetwork HB is a subnetwork
of G that minimizes the equilibrium latency, i.e. HB has L(HB) ≤ L(H) for any
subnetwork H of G.

Problem Definitions. We now introduce three basic problems regarding selfish
network design:

– Paradox-Ridden Recognition (ParRid) : Given an instance G, decide if
G is paradox-ridden.

– Best Subnetwork Equilibrium Latency (BSubEL) : Given an instance G
defined on a network G, find the best subnetwork HB of G and its equilibrium
latency L(HB).

– Minimum Latency Modification (MinLatMod) : Given an instance G
defined on a network G(V, E) with a polynomial latency �e(x) =

∑d
i=0 ae,ix

i,
ae,i ≥ 0, for each e ∈ E, find modified latencies �̃e(x) =

∑d
i=0 ãe,ix

i, ãe,i ≥ 0,
e ∈ Eo, so that the Euclidean distance of the vectors (ae,i)e∈Eo,i∈[d] and
(ãe,i)e∈Eo,i∈[d] is minimum, and for the instance G̃o defined on the network
Go(V, Eo) with latencies �̃e(x), o is a Nash flow with common latency L∗(G).

3 Recognizing Paradox-Ridden Instances

In this section, we present a polynomial-time algorithm for ParRid on instances
with strictly increasing linear latencies. We start with a lemma that reduces
ParRid to the problem of checking if some optimal flow o is a Nash flow on Go.

Lemma 1. An instance G defined on a network G(V, E) is paradox-ridden iff
there is an optimal flow o that is a Nash flow on the subnetwork Go(V, Eo).

For instances with strictly increasing linear latencies, the optimal flow is unique
and can be efficiently computed. Then, checking whether the optimal flow o is
a Nash flow on Go can be performed by a shortest path computation.

Theorem 1. ParRid can be decided in polynomial time for instances with
strictly increasing linear latency functions.

466 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

Proof. Computing the unique optimal flow o for an instance G with strictly
increasing linear latencies can be performed in polynomial time (see e.g. [24]).
To check whether o is a Nash flow on the subnetwork Go(V, Eo), we compute
the length d(v) of the shortest s − v path wrt the edge lengths {�e(oe)}e∈Eo

for all vertices v ∈ V . Then o is a Nash flow if for every edge (u, v) ∈ Eo,
d(v) = d(u) + �(u,v)(o(u,v)) (see e.g. [29, Proposition 2.10]). ��

Dealing with Constant Latencies. Next we formulate a general sufficient con-
dition, under which ParRid can be decided in polynomial time for instances with
arbitrary linear latencies. Let G be an instance defined on a network G(V, E),
let Ec = {e ∈ E : ae = 0} be the set of edges with constant latencies, let
Ei = E \ Ec be the set of edges with strictly increasing latencies, and let O be
the set of different optimal flows of G.

All optimal flows assign the same traffic to the edges with strictly increasing
latencies, and can differ only on edges with constant latencies. Given a fixed op-
timal flow o, we formulate a Linear Program whose feasible solutions correspond
to all (G-feasible) flows that agree with the optimal flows on the edges in Ei :

min
∑

e∈Ec

febe , s.t.
∑

u:(v,u)∈Ei

o(v,u) +
∑

u:(v,u)∈Ec

f(v,u) =
∑

u:(u,v)∈Ei

o(u,v) +
∑

u:(u,v)∈Ec

f(u,v)

∀v ∈ V \ {s, t}
∑

u:(s,u)∈Ei

o(s,u) +
∑

u:(s,u)∈Ec

f(s,u) = 1 (LP)

∑

u:(u,t)∈Ei

o(u,t) +
∑

u:(u,t)∈Ec

f(u,t) = 1

fe ≥ 0 ∀e ∈ Ec

(LP) has a variable fe for each edge e ∈ Ec, while all o-related terms are fixed
and determined by o. An optimal solution to (LP) corresponds to a G-feasible
flow that agrees with o on all edges in Ei and allocates traffic to the edges in
Ec so that the total latency is minimized. Hence, every optimal solution to (LP)
corresponds to an optimal flow. On the other hand, every optimal flow o′ has
oe = o′e for all e ∈ Ei, and is translated into an optimal solution to (LP) by
setting fe = o′e for all e ∈ Ec. Therefore, there is a one-to-one correspondence
between the optimal solutions to (LP) and the optimal flows in O.

Given an optimal flow o, the discussion above reduces the problem of checking
if there is a o′ ∈ O that is a Nash flow on Go′ to the problem of generating all
optimal solutions of (LP) and checking whether some of them can be translated
into a Nash flow on the corresponding subnetwork. This can be performed in
polynomial time if (LP)’s optimal solution is unique (see e.g. [22, Theorem 2] on
how to efficiently decide uniqueness of the optimal solution). Thus,

Theorem 2. ParRid can be decided in polynomial time for instances with linear
latency functions where (LP) has a unique optimal solution.

Efficient Methods for Selfish Network Design 467

In fact, it suffices to generate all optimal basic feasible solutions. This is true
because (LP) allocates traffic to constant latency edges only. Hence, if a feasible
solution f can be translated into a Nash flow on the corresponding subnetwork,
this holds for any other feasible solution f ′ with {e : f ′

e > 0} ⊆ {e : fe > 0}.
Therefore, the approach above can be extended to instances where (LP) has a
small number of basic feasible solutions (i.e. polynomially many in m). This class
includes instances with a constant number of constant latency edges.

4 Approximating the Best Subnetwork

Networks with Polynomially Many Short Paths. We present a subexpo-
nential-time approximation scheme for BSubEL on networks with polynomially
many paths, each of polylogarithmic length. We first show that any flow (on
any network) admits an ε-approximate “sparce” flow, which assigns traffic to
O(log m/ε2) paths. The proof builds on the proof of Althöfer’s Lemma [2].

Lemma 2. Let G be an instance on a network G(V, E), and let f be any G-
feasible flow. For any ε > 0, there exists a G-feasible flow f̃ that assigns positive
traffic to at most �log(2m)/(2ε2)�+1 paths, such that |f̃e − fe| ≤ ε, for e ∈ E.

Proof. For convenience, we let μ = |P| denote the number of paths in G, and
index the s− t paths in G by integers in [μ]. Since the traffic rate is normalized
to 1, we can interpret the flow f as a probability distribution on the set of paths
P . We prove that if we select k > log(2m)/(2ε2) paths uniformly at random
with replacement according to (the probability distribution) f , and assign to
each path j a flow equal to the number of times j is selected divided by k, we
obtain a flow that is an ε-approximation to f with positive probability. By the
Probabilistic Method [1], such a flow exists.

Let ε be any fixed positive number, and let k = �log(2m)/(2ε2)�+1. We define
k independent identically distributed random variables P1, . . . , Pk, each taking
an integer value in [μ] according to distribution f . Namely, for all i ∈ [k] and
j ∈ [μ], IP[Pi = j] = fj. For each path j ∈ [μ], let Fj be a random variable
defined as Fj = |{i ∈ [k] : Pi = j}|/k. By linearity of expectation, IE[Fj] = fj .
For each edge e and each random variable Pi, we define an indicator variable
Fe,i that is 1 if e is included in the path indicated by Pi, and 0 otherwise.
Since the random variables {Pi}i∈[k] are independent, for every fixed edge e, the
variables {Fe,i}i∈[k] are independent as well. In addition, for every edge e, let
Fe = 1

k

∑k
i=1 Fe,i . We observe that Fe =

∑
j:e∈j Fj , and that IE[Fe] = fe .

Since
∑μ

j=1 Fj = 1, we can interpret the value of each Fj as an amount of
flow assigned to path j, and the value of each Fe as an amount of flow assigned
to edge e. Then the random variables F1, . . . , Fμ define a (G-feasible) flow on G
that assigns positive traffic to at most k paths and agrees with f on expectation.
By applying the Chernoff-Hoeffding bound [12], we obtain that for every edge e,

IP[|Fe − fe| > ε] ≤ 2e−2ε2k < 1/m ,

468 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

where we use that k > log(2m)/(2ε2). By applying the union bound, we obtain
that IP[∃e : |Fe − fe| > ε] < m(1/m) = 1. Therefore, for any integer k >
log(2m)/(2ε2), there is positive probability that the (G-feasible) flow (F1, . . . , Fμ)
satisfies |Fe − fe| ≤ ε for all e ∈ E. By the Probabilistic Method, there exists a
flow f̃ with the properties of (F1, . . . , Fμ). ��
For any ε > 0, let ε1 > 0 depend on ε and on some parameters of G. By Lemma 2,
there exists an ε1-approximation f̃ to a Nash flow f on the best subnetwork
L(HB) that assigns positive traffic to at most �log(2m)/(2ε21)�+1 paths. If G has
polynomially many paths, f̃ can be found in subexponential time by exhaustive
search. Next we show that if all paths in G are relatively short, f̃ is an ε-Nash
flow on Gf̃ , and all players’ latencies in f̃ are at most L(HB) + ε/2. Thus we
obtain a subexponential approximation scheme for BSubEL.

Theorem 3. Let G = (G(V, E), (aex + be)e∈E , 1) be an instance with linear
latencies, let α = maxe∈E{ae}, and let HB be the best subnetwork of G. For
some constants d1, d2 > 0, let |P| ≤ md1 and |p| ≤ logd2 m, for all p ∈ P. Then,
for any ε > 0, we can compute in time mO(d1α2 log2d2+1(2m)/ε2) a flow f̃ that is
an ε-Nash flow on Gf̃ and satisfies �p(f̃) ≤ L(HB)+ ε/2, for all paths p in Gf̃ .

Proof sketch. Let f be an acyclic Nash flow on the best subnetwork HB, and
for any ε > 0, let ε1 = ε/(2α logd2(2m)). Wlog. we assume that HB is precisely
Gf . By Lemma 2, there exists a G-feasible acyclic flow f̃ on HB that assigns
positive flow to at most k = �log(2m)/(2ε21)�+1 = �2α2 log2d2+1(2m)/ε2�+1
paths, and satisfies |fe − f̃e| ≤ ε1 for all edges e in HB, and f̃e = 0 for all
edges e not in HB. Using that f is a Nash flow on HB with L(f) = L(HB), we
show that for any path p in the subnetwork Gf̃ determined by the edges used
by f̃ , |�p(f) − L(HB)| ≤ ε/2. Therefore, there exists a G-feasible flow f̃ that
assigns positive flow to at most k paths, is an ε-Nash flow on Gf̃ , and satisfies
|�p(f) − L(HB)| ≤ ε/2, for all paths p in Gf̃ . A flow with the properties of f̃

can be computed in time mO(d1k) by exhaustive search. ��
Instances with Strictly Increasing Latencies. For such instances, we show
how to efficiently approximate the equilibrium latency on the best subnetwork
within a factor less than the inapproximability threshold of 4/3.

Theorem 4. For instances with strictly increasing linear latencies, BSubEL can
be approximated in polynomial time within a factor of 4/3 − δ, where δ > 0
depends on the instance.

Proof sketch. Let G be an instance with strictly increasing linear latencies defined
on G(V, E), and let HB be the best subnetwork of G. If G is paradox-ridden,
by Theorem 1, we can recognize it and compute HB and L(HB) in polynomial
time. Hence for paradox-ridden instances, we have an approximation ratio of 1.

If G is not paradox-ridden, we use the trivial algorithm that returns the
entire network G. Since G is not paradox-ridden, L(HB) > L∗(G). Setting
δ = ρ(G)(L(HB)−L∗(G))/L(HB) > 0, we obtain that L(G)/L(HB) = ρ(G)−δ.
Since G has linear latencies, ρ(G) ≤ 4/3, and the theorem follows. ��

Efficient Methods for Selfish Network Design 469

5 Enforcing the Optimal Flow by Latency Modifications

Despite our positive results, there are instances where either finding the best
subnetwork is hard, or the equilibrium latency on the best subnetwork is not
close to the optimal average latency. For such instances, we present a polynomial-
time algorithm that enforces the optimal flow by performing a minimal amount
of latency modifications on the edges used by the optimal flow.

Theorem 5. MinLatMod can be solved in polynomial time for instances with
polynomial latency functions.

Proof. Let G be an instance defined on a network G(V, E) with a polynomial
latency function �e(x) =

∑d
i=0 ae,ix

i, ae,i ≥ 0, for each e ∈ E. We can efficiently
compute an optimal flow o within any specified accuracy (see e.g. [11]) and the
corresponding subnetwork Go(V, Eo).

Let α = (ae,i)e∈Eo,i∈[d] be coefficients vector of the latency functions for the
edges used by the optimal flow o. We seek a modified coefficients vector α̃ =
(ãe,i)e∈Eo,i∈[d] so that the Euclidean distance of α and α̃ is minimized, and
for the instance G̃o defined on Go with latency functions �̃e(x) =

∑d
i=0 ãe,ix

i,
ãe,i ≥ 0, e ∈ Eo, the flow o is a Nash flow with common latency L∗(G). The best
vector α̃ is given by the optimal solution to the following Quadratic Program:

min
∑

e∈Eo

d∑

i=1

(ae,i − ãe,i)2

s.t.
∑

e∈p

d∑

i=0

ãe,i oi
e = L∗(G) ∀paths p in Go (QP)

ãe,i ≥ 0 ∀e ∈ Eo , ∀i ∈ [d]

The equality constraints ensure that all paths in Go have a common latency
L∗(G) in o wrt the modified latency functions �̃. Thus o is a Nash flow with
common latency L∗(G) for the modified instance G̃o . (QP) always admits a
feasible solution (see e.g. [25, Cor. 2.7]). Moreover, (QP) is a convex separable
Quadratic Program, and can be solved in polynomial time within any specified
accuracy (see e.g. [11]). ��

Remark 1. We can use the same approach to compute a modified coefficients
vector that turns the optimal flow o into a Nash flow on Go wrt to the modified
latencies with any prescribed common latency Λ.

References

1. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, Chichester (1992)
2. Althöfer, I.: On Sparse Approximations to Randomized Strategies and Convex

Combinations. Linear Algebra and Applications 99, 339–355 (1994)

470 D. Fotakis, A.C. Kaporis, and P.G. Spirakis

3. Azar, Y., Epstein, A.: The Hardness of Network Design for Unsplittable Flow with
Selfish Users. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879,
pp. 41–54. Springer, Heidelberg (2006)

4. Bonifaci, V., Harks, T., Schäfer, G.: Stackelberg Routing in Arbitrary Networks.
In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 239–250.
Springer, Heidelberg (2008)

5. Braess, D.: Über ein Paradox aus der Verkehrsplanung. Unternehmensforschung 12,
258–268 (1968)

6. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for Linear Atomic Con-
gestion Games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
184–195. Springer, Heidelberg (2006)

7. Cole, R., Dodis, Y., Roughgarden, T.: How Much Can Taxes Help Selfish Routing?
J. Comput. System Sci. 72(3), 444–467 (2006)

8. Fleischer, L., Jain, K., Mahdian, M.: Tolls for Heterogeneous Selfish Users in Multi-
commodity Networks and Generalized Congestion Games. In: Proc. of FOCS 2004,
pp. 277–285 (2004)

9. Fotakis, D.: Stackelberg Strategies for Atomic Congestion Games. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 299–310. Springer,
Heidelberg (2007)

10. Fotakis, D., Spirakis, P.: Cost-Balancing Tolls for Atomic Network Congestion
Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 179–
190. Springer, Heidelberg (2007)

11. Hochbaum, D.S., Shanthikumar, J.G.: Convex Separable Optimization is not Much
Harder than Linear Optimization. J. ACM 37(4), 843–862 (1990)

12. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

13. Kaporis, A.C., Spirakis, P.G.: The Price of Optimum in Stackelberg Games on
Arbitrary Single Commodity Networks and Latency Functions. In: Proc. of SPAA
2006, pp. 19–28 (2006)

14. Karakostas, G., Kolliopoulos, S.: Edge Pricing of Multicommodity Networks for
Heterogeneous Selfish Users. In: Proc. of FOCS 2004, pp. 268–276 (2004)

15. Karakostas, G., Kolliopoulos, S.: Stackelberg Strategies for Selfish Routing in Gen-
eral Multicommodity Networks. Algorithmica 53(1), 132–153 (2009)

16. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving Network Optima Using Stackelberg
Routing Strategies. IEEE/ACM Trans. on Networking 5(1), 161–173 (1997)

17. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

18. Lin, H., Roughgarden, T., Tardos, É.: A Stronger Bound on Braess’s Paradox. In:
Proc. of SODA 2004, pp. 340–341 (2004)

19. Lin, H., Roughgarden, T., Tardos, É., Walkover, A.: Braess’s Paradox, Fibonacci
Numbers, and Exponential Inapproximability. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
497–512. Springer, Heidelberg (2005)

20. Lipton, R.J., Markakis, E., Mehta, A.: Playing Large Games Using Simple Strate-
gies. In: Proc. of EC 2003, pp. 36–41 (2003)

21. Lipton, R.J., Young, N.E.: Simple Strategies for Large Zero-Sum Games with Ap-
plications to Complexity Theory. In: Proc. of STOC 1994, pp. 734–740 (1994)

22. Mangasarian, O.L.: Uniqueness of Solution on Linear Programming. Linear Algebra
and its Applications 25, 151–162 (1979)

23. Milchtaich, I.: Network Topology and the Efficiency of Equilibrium. Games and
Economic Behavior 57, 321–346 (2006)

Efficient Methods for Selfish Network Design 471

24. Minoux, M.: A Polynomial Algorithm for Minimum Quadratic Cost Flow Problems.
European J. of Operational Research 18(3), 377–387 (1984)

25. Roughdarden, T., Tardos, É.: How Bad is Selfish Routing? J. ACM 49(2), 236–259
(2002)

26. Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology.
In: Proc. of STOC 2002, pp. 428–437 (2002)

27. Roughgarden, T.: Stackelberg Scheduling Strategies. SIAM J. on Computing 33(2),
332–350 (2004)

28. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge
(2005)

29. Roughgarden, T.: On the Severity of Braess’s Paradox: Designing Networks for
Selfish Users is Hard. J. Comput. System Sci. 72(5), 922–953 (2006)

30. Valiant, G., Roughgarden, T.: Braess’s Paradox in Large Random Graphs. In: Proc.
of EC 2006, pp. 296–305 (2006)

	Efficient Methods for Selfish Network Design
	Introduction
	Model, Preliminaries, and Problem Definitions
	Recognizing Paradox-Ridden Instances
	Approximating the Best Subnetwork
	Enforcing the Optimal Flow by Latency Modifications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

